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ABSTRACT
The scattering from a metal plane with a ridge is consid-
ered in the case of line source illumination and for two
polarizations. Exact analytical results are expressed using
series that contain products of radial and angular Mathieu
functions. The exact analytical results are computed and
compared with high-frequency approximations and mea-
surements.
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1 Introduction

The problem of the scattering by a strip was previously
considered by many authors and a list of references can
be found in [1]. Preliminary results for a metallic plane
with a strip, or ridge, between isorefractive materials were
presented in [2]. The geometry of Fig. 1 was analyzed
in [3] under the assumption of plane wave incidence.
In this work, the geometry of Fig. 1 is considered for
a time-harmonic line source incidence, where the time-
dependence factor exp(jωt) is omitted throughout.

2 Geometry of the problem

This is a two-dimensional problem whose cross section is
shown in Fig. 1. The axis x = 0 is a perfect electric con-
ductor (p.e.c.) plane and the segment OA is also a p.e.c.
The pointsA and B are the foci of an elliptic coordinate
system with focal distance d. The relationship between
elliptic cylinder and rectangular cartesian coordinates is
x = d/2 coshu cos v, y = d/2 sinhu sin v, z = z, where
0 ≤ u < ∞, 0 ≤ v ≤ 2π. It is also convenient to introduce
the variables (ξ, η, z) defined by ξ = coshu, η = cos v,
where obviously ξ ≥ 1, −1 ≤ η ≤ 1.

The coordinate surfaces with constant ξ are cylinders
of elliptic cross-section with foci at A and B. Coordinate
surfaces with constant η are hyperbolas with the same foci.
When ξ = 1, each value of η defines a point (ξ, η) that
falls on the segment of the x axis between the foci A and
B. Similarly, if η = 1(−1), each value for ξ, where ξ > 1,
defines a point (ξ, η) on the segment of the x axis in the

Figure 1. Geometry of the problem showing a line source at
(u0, v0) ≡ (ξ0, η0) and its image, (u0, π−v0), with respect
to the ground plane located at x = 0.

interval x > d/2(x < −d/2). The positive portion of
the y axis corresponds to v = π/2 and the negative por-
tion, to v = −π/2. The formulas in subsequent sections
contain the dimensionless quantity c = kd/2. The inverse
transformation from cartesian coordinates (x, y) to elliptic
coordinates (ξ, η) is reported here for convenience:

ξ =√
4(x2 + y2) + d2 +

√
16(x2 + y2)2 + d4 − 8d2(x2 − y2)

2d2

(1)

η =
2x

dξ
. (2)

The notation for the Mathieu functions that are used in the
following sections is taken from [4].



3 E polarization

Consider a line source parallel to the z-axis and located
at the elliptic coordinates (ξ0, η0) ≡ (u0, v0) ≡ (x0, y0),
whose primary electric field is

Ei = ẑEi
z = ẑH

(2)
0 (kR) , (3)

where k is the wavevector and

R =
√

(x − x0)2 + (y − y0)2 (4)

is the distance between the line source and the observation
point (x, y) ≡ (u, v) ≡ (ξ, η). The incident field may be
expanded in a series of elliptic cylinder functions [1]:

Ei
z = H

(2)
0 (kr) =

4
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where ξ<(ξ>) means the smaller (larger) between ξo and
ξ. Initially, one assumes that the ridge is absent so that
the reflected field is given by an expression similar to (5),
where the image of the source is located at (−x0, y0) ≡
(u0, π − v0), as shown in Fig. 1. The total geometrical
optics field is

Ei
z + Er
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2l+1(c, ξ>)

N
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So2l(c, η0)So2l(c, η). (6)

With the ridge present, the total field is given by

Ez = Ei
z + Er

z + Es
z (7)

where the scattered field Es
z represents a perturbation to the

geometrical optics field (6) and is written as:

Es
z = 8

∞∑
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The modal coefficients are obtained by applying the bound-
ary conditions along the metal surfaces using the properties
reported in [5], [6], which yield

a
(e)
2l+1 = −Re(1)

2l+1(c, 1)Re(4)
2l+1(c, ξ0)

Re(4)
2l+1(c, 1)

(9)

a
(o)
2l = 0 (10)

4 H polarization

Consider a magnetic line source parallel to the z-axis and
located at the elliptic coordinates (ξ0, η0) ≡ (u0, v0) ≡
(x0, y0), whose primary magnetic field is H i = ẑHi

z =
ẑH

(2)
0 (kR).

Similar to the E-polarization case, the incident field
due to the magnetic line source may be expressed as a series
of Mathieu functions. When the ridge is absent, the total
geometrical optics field is:

Hi
z + Hr

z =

8
∞∑
l=0

Re(1)
2l (c, ξ<)Re(4)

2l (c, ξ>)

N
(e)
2l

Se2l(c, η0)Se2l(c, η)+

Ro(1)
2l+1(c, ξ<)Ro(4)

2l+1(c, ξ>)

N
(o)
2l+1

So2l+1(c, η0)So2l+1(c, η)

(11)

With the ridge present, the total field is given by

Hz = Hi
z + Hr

z + Hs
z (12)

where the scattered field Hd
z represents a perturbation to

the geometrical optics (11) field and is written as:
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The application of the boundary conditions leads to

b
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5 Comparison with high-frequency approxi-
mations

The exact total fields given by (7) and (12) for the E and
H polarizations, respectively, are approximated using a
high-frequency technique, the uniform theory of diffraction
(UTD) [7], [8]. The high-frequency approximation is ob-
tained by removing the metal plane x = 0, introducing the
image OB of the segment OA and the image of the source.
As a result, the contribution of the source towards the ob-
servation point will consist of two diffracted rays and, if a
line of sight exists, a direct ray, as shown in Fig. 2. A simi-
lar set of rays must be considered also for the image of the
source.



Figure 2. Geometry of the problem without the pec plane.
For simplicity, this figure only shows the contribution from
the original source, but another set of three ray trajectories
from the image of the source needs to be accounted for to
evaluate the total field at (u, v).

6 Numerical results

The numerical computations are based on some of the sub-
routines described in [9] and on the acceleration technique
presented in [10]. Total fields are computed for three values
of the parameter c = kd/2 that correspond to different val-
ues of the ratio d/λ. The results computed using formulas
(7) and (12) are represented by a solid line, while the UTD
results are represented by a dashed line. Fig. 3 shows the
results for E polarization. In all three cases, the agreement
between the exact theory and the high-frequency method is
very good. In fact, one can hardly recognize that for each
value of c two curves are actually overlapped, even though
the distances among source, ridge, and observation point
are only a few wavelengths. Fig. 4 shows the results for H
polarization. Unlike the case of E polarization, it is possi-
ble to observe the difference between the solid and dashed
line. This difference is particularly noticeable for the case
c = 1, which correspond to a ridge that is shorter than
one wavelength. When the value of c increases, the UTD
approximation provides results that are closer to the exact
ones.

Experiments were also conducted to compare the the-
oretical results given by (7) and (12) with measurements
data. The antennas used in the experiments are the same
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Figure 3. E polarization. Total field Ez due to a line source
located at (x0 = λ/2, y0 = 2λ) when the observation point
moves along the line (0 ≤ x ≤ 10λ, y = −3λ). The solid
lines represent the exact results, while the dashed lines rep-
resent the UTD approximation.
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Figure 4. H polarization. Total field Hz due to a line source
located at (x0 = λ/2, y0 = 4λ) when the observation point
moves along the line (0 ≤ x ≤ 10λ, y = −10λ). The solid
lines represent the exact results, while the dashed lines rep-
resent the UTD approximation.

described in [11]. Fig. 5 shows the results for the E-
polarization case. One can observe a very good agreement
when the distance of the observation point from the ground
plane exceeds approximately 12λ. When the observation
point is closer to the the ground plane the agreement is not
so good and this behavior is attributed to an interaction be-
tween the antenna used in the experiment and the metallic
plane. Similar conclusions may be drawn for Fig. 6.
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Figure 5. E polarization. Normalized value of the total
field |Ez | due to a line source located at (x0 = 6.25λ, y0 =
115λ) when the observation point moves along the line
(0 ≤ x ≤ 46λ, y = −114.17λ). The solid line repre-
sents the exact results, while the dashed line represents the
measurements. These results correspond to c = 52 .
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Figure 6. H polarization. Normalized value of the total
field |Hz | due to a line source located at (x0 = 6.25λ, y0 =
115λ) when the observation point moves along the line
(0 ≤ x ≤ 42λ, y = −114.17λ). The solid line repre-
sents the exact results, while the dashed lines represent the
measurements. These results correspond to c = 52 .

7 Conclusions

These results are important because they present exact so-
lutions to a new boundary value problem thus enriching the
list of geometries for known canonical solutions. Addition-
ally, the comparisons with high-frequency UTD approxi-
mations and measurements data confirm the validity of the
theoretical predictions.
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